MECHANISMS OF **ACYLATION** OF **2,3-DIHYDROBENZOXAZOL-2-ONE AND 2H-1,4-BENZOXAZIN-3(4H)-ONE**

NICOLE **COTELLE**

Laboratoire de Chimie Therapeutique, Faculte de Pharmacie, 3 rue du Professeur Laguesse, 59045 Lille Cedex, France **PHILIPPE** COTELLE* **AND SYLVIE CAPELLE**

Laboratoire de Chimie Organique Physique, URA (CNRS) 351, Université des Sciences et Techniques de Lille Flandres, *Artois, 59655 Villeneuve d'Ascq Cedex, France*

DANIEL LESIEUR

Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59045 Lille Cedex, France

The kinetics of the acylation of 2,3-dihydrobenzoxazoI-2-one with dodecanoic acid in polyphosphoric acid were investigated. Two competitive reactions occurred at the *3-* **and 6-positions. The acylation reactions in polyphosphoric acid of 2,3-dihydrobenzoxazoI-2-one and 2H-1,4-benzoxazin-3(4H)-one give 6- and 7-acyl derivatives. 4-Acetyl-2H-1,4-benzoxazin-3(4H)-one rearranged in polyphosphorie acid exclusively to the 7-acetyl derivative. Two mechanisms are proposed to explain the different reaction sites for the acylation of ZH-1,4-benzoxazin-3(4H)-one.**

INTRODUCTION

Recently, **7-acyl-2H-1,4-benzoxazin-3(4H)-ones (4)** were found to exhibit interesting normolipaemic properties.¹⁻⁴ These derivatives were prepared from **6-acyI-2,3-dihydrobenzoxazol-2-ones (2)** in a two-step procedure which gave high yields (Scheme 1). Unfortunately, it was not always possible to obtain compounds **2** satisfactorily, the yield of the acylation with carboxylic acid or acyl halides in polyphosphoric acid **(PPA)536** depending on the nature of the acyl group and the substitution on the heterocyclic **N** atom. The yield

of the acylation of **3-methyl-2,3-dihydrobenzoxazol-2** one is generally higher and the reaction conditions milder than those with **2,3-dihydrobenzoxazoI-2-one** (1) .

The benzoyl migration observed in **PPA** for benzanilide and N -benzoyltoluidide⁷ similarly to the photochemically induced rearrangement of photochemically induced rearrangement of **3-acyl-2,3-dihydrobenzoxazol-2-ones'** prompted us to investigate the mechanism of the acylation of **2,3-dihydrobenzoxazol-2-one** and to compare it with the acylation of **2H-1,4-benzoxazin-3(4H)-one.**

In this paper, we report the kinetics and mechanistic

*Author for correspondence.

0894-3230/90/ 120807-05\$05 .OO *0* 1990 by John Wiley & Sons, Ltd. *Received 31 October 1989 Revised 18 June 1990* studies of the reaction of acylation of 2,3 dihydrobenzoxazol-2-one and *2H-* 1,4-benzoxazin- $3(4H)$ -one.

RESULTS AND DISCUSSION

Acylation of 2,3-dihydrobenzoxazoI-2-one

In order to simplify the kinetic investigations, the acylation reaction was carried out with dodecanoic acid in polyphosphoric acid at 120[°]C. Dodecanoic acid was chosen because it is similarly insoluble in aqueous acidic medium as the two products of the reaction, i.e. the *6* and 3-acyl derivatives, and so they are easily obtained as a mixture by filtration after hydrolysis. Moreover, the **6-** and 3-dodecanoyl derivatives are unreactive in aqueous acidic medium whereas the 3-acyl derivatives, with a shorter alkyl chain, are easily hydrolysed at room temperature to carboxylic acid and compound **1** (Table 1). The reaction temperature was fixed at 120° C because then the 3,6-didodecanoyl derivative *5* was not detected (in the ${}^{1}H$ NMR spectrum there were no signals at 8-17, 7.92 and **3.15** ppm; see Experimental) even after *2* h of reaction (Table **2).** The resulting mixture was analysed in ¹H NMR in CD_2Cl_2 by

Table 1. Hydrolysis of 3 $(3 \rightarrow 1)$ in ethanol or water with hydrochloric acid

R ^a	Temperature $(^{\circ}C)$		Solvent Time (min)	Yield of $1 \ (\%)$		
CH ₁	25	Water	60	100		
	25	Ethanol	10	100		
C_4H_9	25	Water	60	80		
	25	Ethanol	10	40		
	80	Ethanol	30	100		
$C_{11}H_{23}$	25	Water	60	0		
	25	Ethanol	10	0		
	80	Ethanol	30	20		
	80	Ethanol	180	100		

'See Scheme *2.*

Table 2. Reaction of **1** with dodecanoic acid in PPA

			Yield $(\%)$			
	Entry Temperature $(^{\circ}C)$ Time (min)					
	120	120	17.5	48.5		
$\mathbf{2}$	120	360	16	52	17	
3	150	120	26	26	15	
	150	360	29	36	25	

Figure 1. Reaction of 1 with dodecanoic acid at 120°C in PPA: composition of the mixture at different times. (*) Dodecanoic acid; (+) compound **2;** (*) compound **3**

Table **3.** Kinetics of reaction of **1** with dodecanoic acid at $120 °C$ in PPA

		-90	120
			6.6
			3.5
			9.7
		0 15 30 60	Dodecanoic acid (mmol) $20 \quad 17 \cdot 2 \quad 15 \cdot 4 \quad 11 \cdot 6 \quad 9 \cdot 1$ $0 \t 0.4 \t 0.7 \t 1.6 \t 2.1$ $0 \quad 2.4 \quad 4.0 \quad 6.8 \quad 8.7$

integration of the triplets of COCH₂ which appeared at 2.30 , 2.96 and 3.10 ppm for dodecanoic acid and the 6-dodecanoyl and 3-dodecanoyl compounds, respectively [verification of these integrations were obtained from the other signals (aromatic and aliphatic)]. The validity of this method was tested by three consecutive assays.

The results (Figure **1,** Table 3) indicated that the reaction followed a pseudo-first-order law (compound **1)** was in substantial excess) and at 120°C gave rate constants for two competitive reactions (Scheme *2)* of $k_1 = 1 \cdot 1 \times 10^{-4} \text{ s}^{-1}$ and $k_2 = 4 \cdot 0 \times 10^{-5} \text{ s}^{-1}$. Compound **3** did not rearrange into **2** under these conditions, as established by heating a solution of **3** in PPA at 120 *"C* for *2* h, when **3** was recovered in 97% yield. However, we have shown that 3-acyl-2,3 dihydro benzoxazol-2-ones rearranged into 6-acyl derivatives with good yields' (higher than those from the direct acylation of **1).** The general mechanism of the acylation can be described as a competitive acylation (in the 3- or 6-position) plus a rearrangement of the acyl group from the 3- to the 6-position (Scheme2). The lower yields encountered in the direct acylation are explained by the formation of 3-acyl compounds, which gave **1** after hydrolysis. This was verified by analysing the crude product of the acylation of **1** with butanoic

Scheme 2

acid, when we found 6-butanoy1, 3-butanoyl and 3-6 dibutanoyl derivatives [83, 9 and 8% respectively, calculated from **'H** NMR spectrum of the crude product (56% yield)].

Rearrangement of 4-acetyl-2H-1,4-benzoxazin-3(4H) one

In order to compare the reactivities of **1** and $2H-1,4$ -benzoxazin-3($4H$)-one(6), we prepared 4acetyl-2H- **1,4-benzoxazin-3(4H)-one** from acetic anhydride and **6.** The 4-acetyl derivative rearranged in PPA exclusively but in low yield (40%) into the 7-acetyl derivative (50% of **6** was recovered). The acylation of **6** with acetic acid in PPA gave 6- and 7-acetyl derivatives (85 and 15%, respectively) in good yield (79%) whereas in dichloromethane with aluminium chloride and acetyl chloride, the 6-acetyl derivative was obtained selectively.¹⁰ Because the method of structure determination in the cited patent¹⁰ was inadequately unambiguous and the physical data (melting point) were nearly the same for the 6- and 7-acetyl derivatives, we investigated the **'H** NMR data of these compounds. To confirm the position of the acetyl group, we irradiated the 4-methyl signal of the 6-acetyl-4-methyl- $2H-1$,4-benzoxazin-3(4*H*)-one¹⁰ and observed an Overhauser effect only on H-5 (26%). On a 400-MHz NMR spectrometer, we were able to differentiate the signals of 6- and 7-acetyl derivatives (Table 4) and calculate the relative proportion of each isomer.

The predominant formation of the 6-acetyl derivative, which appears to result from a direct acylation, can be explained by an increased reactivity at this position owing to the oxygen donor effect, whereas the 7-acetyl derivative probably comes from an N -acylation followed by a Chattaway migration¹¹ [the 7-acetyl derivative is the sole product of the rearrangement of 4-acetyl-2H-1,4-benzoxazin-3(4H)one in PPA (Scheme 3)].

We performed INDO calculations to confirm the regioselective attack of **1** and **6** by electrophiles. The calculations were carried out on HOMO electron density. The results are given in Table *5.*

The calculations indicate that the order of the HOMO electron density of the ring carbons of **1** is $6 > 7a > 4 > 5 > 7 > 3a$, whereas for 6 the order is

Table 4. ¹H NMR data for 6-acetyl- and 7-acetyl-2H-1,4-benzoxazin-3(4H)-ones (CDCl₃, TMS)

	Chemical shifts (ppm)							Coupling constants (Hz)			
	$H-2$	$H-4$	H-5	$H-6$	$H-7$	$H-8$	CH ₃	$J_{\text{H-5,H-6}}$	$^{4}J_{\rm H\text{-5.H\,-7}}$	$^4J_{\rm H\text{-}6,H\text{-}8}$	$^3J_{\rm H\text{-}7,H\text{-}8}$
6-Acetyl	4.66	10.75	7.63	\sim	7.50	7.01	2.49	$\overline{}$	2.00	-	8.30
7-Acetyl	4.63	10.96	6.99	7.50	$\overline{}$	7.64	2.50	8.20	$\overline{}$	$1 - 70$	$\overline{}$

Table *5.* Positional reactivities estimated by INDO calculations of **1** and **6**

 $6 > 5 > 8 > 4a > 7 > 8a$. This is consistent with the observed results.

CONCLUSION

These reinvestigations on the acylation of **1** in PPA give a new view on the mechanism of the reaction and the reactivity of **1.** Comparison with **6** indicates a selective rearrangement of 4-acetyl-2H-1,4-benzoxazin-3(4H)one which gives an alternative synthetic route to 7-acyl-2H- **1,4-benzoxazin-3(4H)-ones.**

EXPERIMENTAL

Melting points were obtained on a Büchi 510 capillary apparatus and are uncorrected. Elemental analysis were performed by CNRS (Vernaison) and were within 0.4% of the theoretical value. Infrared spectra were obtained on a Perkin-Elmer 297 spectrometer on KBr paths. NMR spectra were recorded on WP80 and AM400WB Brüker spectrometers in an appropriate deuterated solvent with tetramethylsilane as internal reference. Thin-layer chromatography (TLC) was performed on 3×10 cm plastic sheets precoated with a 0.2 mm layer of silica gel $60F_{254}$ (Merck), using ethyl acetate-hexane (2: 3) as the solvent system.

Kinetics. In a three-necked flask, 27 g (200 mmol) of **2,3-dihydrobenzoxazoI-2-one, 4** g (20 mmol) of dodecanoic acid and 100 g of polyphosphoric acid were heated at 120° C for various periods. The mixture was poured into 1000 ml of ice-water with vigorous stirring. The precipitate was filtered, washed with water until neutral (pH7) and dried. A powder containing 6 dodecanoyl- and **3-dodecanoyl-2,3-dihydrobenzoxazol-**2-ones and unreacted acid was analysed by ¹H NMR in CDzCl2. **A** pure sample of 3-dodecanoyl derivative was prepared by a known method.⁹ 6-Dodecanoyl and $3,6$ didodecanoyl derivatives were isolated from the crude product of direct acylation (Table 2, entry 4) by fractional crystallization from acetone.

6-Dodecanoyl-2,3-dihydrobenzoxazol-2-one, m.p. 166-168 °C: ¹H NMR (DMSO- d_6), 10⁻00(NH),
7·83(dd, H5), 7·79(d, H7), 7·16(d, H4), 7.83(dd, H5), 7.79 (d, H7), 7.16 (d, H4), 2.96 (t, COCH₂), 1.60 (m, COCH₂CH₂), $1.60(m, COCH₂CH₂),$ 1.24 [m, CO(CH₂)₂(CH₂)₈], 0.85(t, CH₃); IR, 3340-3100 cm⁻¹ (NH), 1740 cm⁻¹ (C=O ring), 1675 cm⁻¹ (C=O). Analysis calculated for C₁₉H₂₇NO₃. C 71.89, H 8.56, N 4.41; found, C 71.90, H 8.51, N 4.38% .

m.p. $126-127^{\circ}\text{C}$: ¹H NMR (CDCl₃), 8.17(d, H4), **3,6-Didodecanoyl-2,3-dihydrobenzoxazol-2-one,** 7.92 (dd, H5), 7.84 (d, H7), 3.15 (t, NCOCH₂), $2.98(t, COCH_2)$, 1.80(quint, NCOCH₂CH₂), 1.76(quint, COCH₂CH₂), 1.29 [m, NCO(CH₂)₂(CH₂)₈ and $CO(CH_2)_2(CH_2)_8$, 0.90(t, 2CH₃); IR, 1830 cm⁻¹ $(C=O$ ring), 1725 cm⁻¹ (NC=O), 1675 cm⁻¹ (C=O). Analysis: calculated for $C_{31}H_{49}NO_4$, C 74.51, H 9.88, N 2-80; found, C 74.17, H 9.83, N 2.77%.

Reaction of 3-dodecanoyl-2,3-dihydrobenzoxazol-2- one. A 3.2 g (10 mmol) amount of 3-dodecanoyl-2,3 dihydrobenzoxazol-2-one and 50 g of polyphosphoric acid were heated at 120 $^{\circ}$ C for 2 h and the mixture was poured into 500 ml of ice-water. The precipitate was filtered, washed with water until neutral (pH 7) and dried. The product was identical with the starting material.'

The acylation of 1 in polyphosphoric acid (110[°]C, 90 min) with butanoic acid gave 6-butanoyl, 3-butanoyl and 3,6-dibutanoyl derivatives (83, 9 and 8%, respectively) with a yield of crude product of 56%. 6-Butanoyl and 3-butanoyl derivatives were prepared as described previously.⁹

3,6-Dibutanoyl-2,3-dihydrobenzoxazol-2-one.

A 1.02 g (5 mmol) amount of 6-butanoyl-2,3dihydrobenzoxazol-2-one was refluxed in 10 ml of butanoic anhydride for 3 h. 3,6-Dibutanoyl-2,3 dihydrobenzoxazol-2-one precipitated on cooling and was filtered. Crystallization from ethanol gave a pure sample $(1.10 \text{ g}, 80\%)$, m.p. $141-142 \degree$ C: ¹H NMR (CDCI₃), 8.04(d, H4), 7.93(dd, H5), 7.91(d, H7), $3.02(t, NCOCH₂)$, $3.00(t, COCH₂)$, $3.02(t, NCOCH₂)$, 1.68(m, NCOCH₂CH₂), 1.63(m, COCH₂CH₂), 0.97 [t, NCO(CH₂)₂CH₃], 0.92 [t, CO(CH₂)₂CH₃]; IR, 1810 cm⁻¹ (C=O ring), 1720 cm⁻¹ (NC=O), $1.68(m, NCOCH₂CH₂),$ 1810 cm^{-1} (C=O ring), 1665 cm⁻¹ (C=O). Analysis calculated for C₁₅H₁₇NO₄, C 65.44 , H 6.22 , N 5.09 ; found, C 65.37 , H 6.04 , $N 5.06\%$.

4-Acety~-2H-l,4-benzoxazin-3(4H)-one. A **1** -49 g (10 mmol) amount of $2H-1$, 4-benzoxazin-3(4H)-one¹² was refluxed in 20 ml of acetic anhydride for 3 h. The solution was cooled and poured into 200ml of ice-water. The aqueous solution was extracted with diethyl ether $(3 \times 50 \text{ ml})$. The organic solution was dried (MgS04) and evaporated. The product was crystallized from cyclohexane $(1.05 \text{ g}, 54\%)$, m.p. $150-151$ °C: ¹H NMR (CDCl₃), 8.05 (dd, H5), $7.25-7.10(m, H6, H7, H8)$, $4.60(s, H2)$, $2.51(s, COCH_3)$; IR, 1725 cm^{-1} (C=O ring), 1700 cm⁻¹ (C=O). Analysis calculated for $C_{10}H_9NO_3$, C 62.82 , H 4.75 , N 7.33 ; found, C 62.49 , H 4.72 , $N 7.35\%$.

Rearrangement of I-acetyl-ZH-l,4-benzoxazin- $3(4H)$ -one. A 1.91 g (10-mmol) amount of 4-acetyl-**2H-1,4-benzoxazin-3(4H)-one** and 50 g of polyphosphoric acid were heated at 110° C for 1.5 h and the mixture was poured into 500 ml of ice-water. The precipitate was filtered, washed with water until neutral (pH 7) and dried. The crude product (40% yield) was analysed by ${}^{1}H$ NMR in CDCl₃ and its spectrum was compared with those of 6-acetyl- and 7-acetyl- $2H-1,4$ benzoxazin- $3(4H)$ -ones [prepared as described previously (Refs 10 and 13, respectively)]. The product was identical with the 7-acetyl derivative.

Acylation of 2H-l,4-benzoxazin-3(4H)-one. In a three-necked flask, 1.49 g (10 mmol) of $2H-1,4$ benzoxazin-3(4H)-one, 0.90 g **(15** mmol) of acetic acid and 50 g of polyphosphoric acid were heated at 110° C for 1.5 h. The mixture was poured into 500 ml of ice-water with vigorous stirring. The precipitate was filtered, washed with water until neutral (pH 7) and dried. The crude product was analysed by ${}^{1}H$ NMR in CDC13. 6-Acetyl (85%) and 7-acetyl (1 *5%)* derivatives were obtained with a yield of 79%.

ZNDO calculations. The INDO calculations on **1** and **6** were performed by using the CNDO/INDO program of Dobosh. I4

ACKNOWLEDGEMENT

We are grateful to B. Planckaert for his kind help with the use of the CNDO/INDO program.

REFERENCES

- **1.** 1. Lesieur, C. Lespagnol, Z. Moussavi, M. Luyckx, C. Brunet, J. C. Fruchart and J. Sauzières, Fr. Pat. 2,588,868 (1987); *Chem. Abstr.* **109,** P 129030h (1988).
- 2. Z. Moussavi, D. Lesieur, C. Lespagnol, J. Sauzieres and P. Olivier, *Eur. J. Med. Chem.* **24,** 55-61 (1989).
- 3. *2.* Moussavi, M. 0. Plancke, **P.** Olivier, D. Lesieur, J. C. Fruchart and J. Sauzieres, *Clin. Chim. Acta* **180,** 35-44 (1989).
- 4. N. Cotelle, PhD Thesis, Lille (1989).
- 5. J. P. Bonte, D. Lesieur, **C.** Lespagnol, M. Plat, J. C. Cazin and M. Cazin, *Eur. J. Med. Chem.* 9, 491-496 (1974).
- 6. P. Renard, D. Lesieur, C. Lespagnol, M. Cazin, J. C. Cazin and *C.* Brunet, *Eur. J. Med. Chem.* **15,** 453-456 (1980).
- 7. K. Desai and C. M. Desai, *J. Indian Chem. SOC.* **48,** 863-866 (1971).
- 8. *S.* Ishida, Y. Hashida, **H.** Shizuka and K. Matsui, *Bull. Chem. SOC. Jpn* **52,** 1135-1138 (1979).
- 9. N. Cotelle, P. Cotelle and D. Lesieur, *Synth. Commun.* **19,** 3259-3266 (1989).
- 10. M. Pesson and **H.** Techer, *Fr. Pat.* 1,560,628 (1969); *Chem. Abstr.* **72**, P 55471w (1970).
- 11. F. D. Chattaway, *J. Chem. SOC.* **85,** 386-398 (1904).
- 12. D. R. Schridhar, M. Jogibhukta and **V.** S. J. Krishnan, *Org. Prep. Proced. Int.,* **14,** 195-197 (1982).
- 13. J. G. Atkinson, J. J. Baldwin and D. E. McClure, *U. S. Pat.* 4,568,679 (1982); *Chem. Abstr.* **97,** P 216201s (1982).
- 14. J. A. Pople and D. L. Beveridge, *Approximate Molecular Orbital Theory,* McGraw-Hill, New York (1970).